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Abstract
Starting from the orthonormal eigenfunctions which are the solutions of the
Schrödinger equation for a given potential it is shown that sets of functions
orthogonal to the eigenstates inside a region of varying radius R may be
constructed. These sets of functions may in turn be used to construct a
new set of functions which satisfy bound-state boundary conditions and are
themselves solutions of the Schrödinger equation in a new potential. The
bound-state spectrum of the new potential is related to the spectrum of the
original potential in a definite manner. The relationship of this construction of
a new potential to the inverse scattering theory approach based on the Gelfand–
Levitan equation and the potentials constructed using supersymmetric quantum
mechanics (SUSYQM) is explored. The connection of this approach to other
approaches based on the implementation of orthogonality and their relation to
Pauli exclusion principle is examined.

PACS numbers: 02.30.Gp, 03.65.Fd, 11.30.Pb

1. Introduction

Inverse scattering theory is concerned with the question of construction of a potential from
given data on bound-state parameters and scattering phaseshifts. The Gelfand–Levitan
equation (Gelfand and Levitan 1951) and the Marchenko equation (Marchenko 1955) were for
a long time the equations which were used to study inverse scattering probelms (Chadan and
Sabatier 1977). The link between supersymmetric quantum mechanics (SUSYQM) (Witten
1981, Andrianov et al 1984, Sukumar 1985a) and inverse scattering theory (Sukumar 1985b)
has provided new insights. It has been shown that a combination of a pair of supersymmetric
(SUSY) transformations may be used to recover the results from the Gelfand–Levitan approach.
An alternative pair of SUSY transformations leads to the construction of singular potentials.
The construction of singular potentials using a pair of SUSY transformations has been used to
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illustrate the relation between deep and shallow potentials in a variety of problems in nuclear
physics (Baye 1987, 1994). Section 2 of this paper examines the question of the construction
of a new potential by the elimination of a certain number of bound-states of a potential starting
from a new point of view namely the orthogonal states inside a region of variable radius R.

The construction of potentials which do not possess a specified set of bound-states has a
long history in the theory of the scattering of complex particles. In section 3 of the paper the
relationship of the approach adopted in this paper with some of the other approaches which
have been used in the past is explored. Section 4 contains the conclusions. Units in which
h̄ = 1 and the reduced mass µ = 1 are used throughout this paper so that h̄2/2µ = 1/2.

2. Orthogonal states inside a region of size R and new potentials

Let �i be the normalized eigenstates which are solutions of the radial Schrödinger equation
for a potential V in the space [0,∞](

− d2

dr2
+ 2 (V − Ei)

)
�i = 0. (1)

A function which is orthogonal to the ground state in the interval [0, R] is then given by

F(r, R) = �2(r) − �1(r)

∫ R

0 �1(y)�2(y) dy∫ R

0 �2
1 (y) dy

. (2)

There is a unique linear combination of �1 and �2 for each value of the size of the box R which
is orthogonal to �1 inside the box region. The function F(r, R) may be used to construct a
new function �2 given by

�2(r) = F(r, r). (3)

It is the purpose of this paper to show that functions such as �2 are themselves eigenstates
of the Schrödinger equation at energy E2 for a new potential which has a spectrum identical
to that of the original potential apart from missing the ground state. This procedure then
corresponds to the construction of a new potential by the elimination of the ground state of a
given potential but preserving the rest of the spectrum. It is easy to generalize this approach
to the elimination of arbitrary number of bound-states. To eliminate the n lowest bound-states
we proceed as follows. The orthonormal eigenstates of V may be used to construct a matrix
M of dimension (n, n) whose elements are given by

Mij (R) =
∫ R

0
�i(y)�j (y) dy. (4)

Next we construct a matrix N of dimension (n + 1, n + 1) whose elements are given by

Nij = Mij i, j = 1, 2, . . . , n

Ni,n+1 =
∫ R

∞
�i(y)�m(y) dy

Nn+1,i = �i(r)

Nn+1,n+1 = �m(r)

(5)

where the index m can take any value. It must be noted that the limits on the integral defining
Ni,n+1 are from ∞ to R. Using the orthonormality of the eigenstates �i we can also write this
element in the form

Ni,n+1 =
∫ R

0
�i(y)�m(y) dy − δim. (6)
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When m > n the δim term will not contribute. However, if m lies in the range [1, n] the δim

term will contribute and therefore for all values m we can consider

Fm(r, R) = Det N

Det M
. (7)

It is clear that when m > n∫ R

0
Fm(r, R)�j (r) dr = 0 if j = 1, 2, . . . , n (8)

because two rows arising from the matrix N become identical and the determinant vanishes.
We have thus established that the functions Fm(r, R) with m > n are orthogonal to the
eigenstates �j(r) in the domain [0, R] when the index j lies in the range [1,n]. The functions
Fm(r, R) also have the property that in the limit R → ∞ they tend to �m(r) because all the
overlap integrals except the diagonal ones in the matrices in equation (7) vanish. Therefore, if
we define

�m(r) = Fm(r, r) (9)

then the functions �m(r) and �m(r) have the same asymptotic behaviour for large r.
Expansion of the determinant in the numerator of equation (7) and the use of the definition

of the inverse of a matrix leads to

Fm(r, R) = �m(r) − �j(r)M
−1
jk (R)M̃km(R) (10)

where the elements of the matrix M̃ are given by

M̃jk(r) =
∫ r

∞
�j(y)�k(y) dy = Mjk(r) − δjk. (11)

The function �m in equation (9) can then be written as

�m(r) = �m(r) − �j(r)M
−1
jk (r)M̃km(r). (12)

In all the above expressions the repeated indices are summed in the range (1, n). When the
index m = l � n the use of

Mkl = δkl + M̃kl (13)

leads to the representation

�l(r) = �j(r)M
−1
j l (r). (14)

Thus in terms of the solutions to the linear equations given by

Mjk(r)�k(r) = �j(r) j, k = 1, 2, . . . , n (15)

for all values of m without any restriction we can write equation (11) as

�m(r) = �m(r) − �k(r)M̃km(r) (16)

where all of the �m satisfy the same boundary conditions as �m in the limit r → ∞.
We can use the simple case of n = 1 to illustrate the structure of the above equations. For

n = 1

M11 =
∫ r

0
�2

1 (y) dy

M̃12 = M12 =
∫ r

0
�1(y)�2(y) dy

M̃11 = M11 − 1 =
∫ r

∞
�2

1 (y) dy

�1(r) = �1(r)

M11

�2(r) = �2(r) − �1(r)M12

(17)
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�2 satisfies bound-state boundary conditions while �1 diverges when r → 0 and does not
satisfy bound-state boundary conditions.

We now return to the general case of arbitrary n and examine the differential equation
satisfied by � defined by equation (16). Differentiation of this equation twice, use of the
Wronskian relation

�j

d�k

dr
− d�j

dr
�k = 2(Ej − Ek)

∫ r

∞
�j(y)�k(y) dy (18)

and rearrangement of the terms lead to the expression

d2�m

dr2
= d2�m

dr2
− d2�k

dr2
M̃km − 2�m

d

dr

n∑
k=1

(�k�k) + 2(Em − Ek)�kM̃km. (19)

The Schrödinger equation satisfied by � namely equations (1), and (16) may then be used to
eliminate �m to obtain

(L + 2Em)�m +
n∑

k=1

((L + 2Ek)�k)M̃km = 0 (20)

where the operator L is defined by

L = d2

dr2
− 2


V − d

dr

∑
j

�j�j


 . (21)

If m = l � n using equation (13) this gives∑
k

((L + 2Ek)�k)Mkl = 0 l = 1, 2, . . . , n. (22)

These linear equations imply that

(L + 2Ek)�k = 0 if Det M �= 0 k = 1, 2, . . . , n. (23)

When used in equation (20) this implies that

(L + 2Em)�m = 0 m = 1, 2, . . . , n, n + 1, . . . . (24)

Thus we have shown that �m for any value of m satisfies the Schrödinger equation given by

d2�m

dr2
= 2(Vn − Em)�m (25)

where the new potential Vn is given by

Vn = V − d

dr

∑
j

�j�j . (26)

Using the property of the determinant

d

dr
ln Det M =

∑
j

∑
k

�jM
−1
jk �k =

∑
k

�k�k (27)

the potential Ṽ may be written in the form

Vn = V − d2

dr2
ln Det M. (28)

We can also infer from equations (11) and (16) that when m > n the solutions �m have the
same asymptotic behaviour as �m as r → ∞ and also vanish as r → 0 and therefore satisfy
the boundary conditions appropriate for a bound-state. But when m � n then it can be shown
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using equation (15) that in the limit r → 0 the solutions φm diverge and therefore do not satisfy
the boundary conditions of a bound-state. Therefore, we can conclude that the potential Vn

supports bound-states at the same energies Em as V when m > n with the eigenfunctions given
by equation (15) and does not have normalizable eigenstates when m � n. These expressions
for the potential obtained from the elimination of the first n bound-states of V are in agreement
with the derivation of singular potentials by Baye (1987). However, in this paper we have
derived these expressions by examining the orthogonality of states inside a region of varying
radius without any reference to supersymmetry. This opens up the possibility of a better
understanding of the physical content of the relation between deep and shallow potentials both
of which can explain a given set of experimental data.

2.1. Orthogonal states outside a region of size R and new potentials

In the discussion presented above we considered functions F(r, R) which were orthogonal
to the first n bound-states of V in the domain [0, R]. An alternative procedure would be to
consider functions F̃ (r, R) which are orthogonal to the first n bound-states of V in the domain
[R,∞] given by

F̃ m(r, R) = �m(r) − �j(r)M̃
−1
jk (R)Mkm(R). (29)

F̃ m can then be used to define a set of new functions

�̃m(r) = F̃ m(r, r) = �m(r) − �j(r)M̃
−1
jk (r)Mkm(r). (30)

Following the same kind of reasoning as in the previous calculation it can be established that
for m = l � n

�̃l(r) = −�j(r)M̃
−1
j l (r) l = 1, 2, . . . , n. (31)

In terms of the solutions to the linear equations given by

M̃jk(r)�̃k(r) = −�j(r) j, k = 1, 2, . . . , n (32)

for all values of m without any restriction we can write

�̃m(r) = �m(r) + �̃k(r)Mkm(r) (33)

all of which satisfy the same boundary conditions as �m in the limit r → 0. By differentiating
this equation twice and using the Wronskian and the Schrödinger equations satisfied by � we
can establish that

d2�̃m

dr2
= 2(Ṽn − Em)�̃m m = 1, 2, , , n, n + 1, . . . (34)

where the new potential is given by

Ṽn = V − d2

dr2
ln Det M̃. (35)

Examination of equation (33) shows that for m > n the functions �̃m satisfy bound-state
boundary conditions and therefore are eigenstates of Ṽn while for m � n they do not satisfy
bound-state boundary conditions. Hence the potential Ṽ1 supports bound-states at the same
energies Em as V when m > n with the eigenfunctions given by equation (33) and does not
have normalizable eigenstates when m � n. This expression for the potential obtained from
the elimination of the first n bound-states of V is identical to the corresponding potential
obtained using the Gelfand–Levitan equations (Abraham and Moses 1980). For scattering
energies the phase shifts in Ṽn are related to the phase shifts in V in a definite manner as
discussed in Sukumar (1985b). Equations (28) and (35) are the main results of this section
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which establish that the method used in this paper leads to the same results as those obtained
using SUSYQM. In the following section the connection of the present approach to other
approaches in the literature is examined.

3. Connection with other approaches and the Pauli exclusion principle

There have been many attempts over the last 65 years to study the effect of the Pauli exclusion
principle in the scattering of a projectile by a target both of which may have internal structure.
The first was the resonating group method (RGM) which was invented by Wheeler (1937). The
basic idea was to build up a wavefunction for the whole nucleus out of cluster wavefunctions
each of which takes into account the interactions within and between individual groups of
nucleons. The nucleons spend a part of their time in each of several groupings and resonate
between these different groupings. The linear combinations of wavefunctions describing the
different groupings take into account symmetries such as the Pauli principle. A few years
later Buckingham and Massey (1941) published a calculation of neutron–deuteron scattering
with a resonating group wavefunction which satisfied the proper space and spin symmetries.
In subsequent years many resonating group calculations for nucleon–nucleus and nucleus–
nucleus scattering were made with properly antisymmetrized wavefunctions. An example is
a calculation of 16O + 16O elastic scattering by Wada and Horiuchi (1988). The resonating
group wavefunction for the elastic scattering of two nuclei is an antisymmetrized product
of wavefunctions for each cluster and a wavefunction ψ(r) where r is the coordinate of the
centre of mass of one cluster relative to the other. The wavefunction ψ(r) satisfies a non-local
Schrödinger equation where the non-local kernel K(r, r′) incorporates the effects of the Pauli
principle. Certain states of relative motion are forbidden by the Pauli principle and these are
automatically excluded by the properties of the non-local kernel.

The resonating group kernel is very complicated and must be calculated accurately in
order to exclude the Pauli forbidden states. In 1968 Saito proposed a simplified approach
called the orthogonality condition model (OCM) (Saito (1968, 1977)). The OCM equation for
the wavefunction of relative motion ψ(r) has a similar structure to the RGM equation. The
simplified non-local kernel contains projection operators designed to make ψ(r) orthogonal
to the Pauli forbidden states. The OCM has been used widely for studying bound and resonant
cluster states in light nuclei. Buck et al (1977) proposed an even simpler approach with a
deep local potential to describe the nucleus–nucleus interation. They noted that the strongly
bound-states in such a potential were very similar to the Pauli excluded states in the RGM
or OCM and argued that those states should be excluded as physical states. Phase shifts and
resonances in alpha–alpha, 3He–alpha and 16O–16O scattering calculated with their method
gave a good representation of the available experimental data and of the results of full-scale
calculations with complete antisymmetrization.

Swan (1955, 1968) investigated the possibility of using shallow local potentials for
scattering problems involving complex particles. Whenever the compound state of the target
and projectile involves more than a full shell of electrons, neutrons or protons then the Pauli
exclusion principle forbids the formation of cluster states with certain intercluster quantum
numbers. Swan (1968) argued that for n excluded compound states the phase shift/binding
energy-equivalent two-body potential should have a repulsive core as r → 0 of the form
2n(2n + 2l + 1)/2r2 in addition to the usual centrifugal barrier l(l + 1)/2r2 term. Swan’s
work clearly established, that in contast to the usual restrictions to non-singular potentials in
potential scattering theory, the scattering of composite systems permits the presence of certain
singularities which have their physical origin in the Pauli exclusion principle.
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Alternative projection procedures have been designed by other authors. Celenza and
Shakin (1979) examined the influence of orthogonality constraints in proton induced reactions.
Continuum proton wavefunctions which are solutions of an optical-model Hamiltonian are
generally not orthogonal to bound proton wavefunctions having the same quantum numbers.
But two different Hamiltonians are used to define the continuum and bound-states of the
proton. The proton distorted wave should in principle be orthogonal to the bound-states of
the proton but since two different Hamiltonians are used it is clear that they would not be
orthogonal in general. Celenza and Shakin solved the problem by introducing a new optical-
model Hamiltonian H̃ with a parameter λ present so that H̃ is orthogonal to the bound-states
and the scattering states of H̃ are chosen such that λ may take values which implement the
required orthogonality. Boffi et al (1982) studied a similar problem arising from the lack of
orthogonality between continuum final states in knockout reactions and suggested the use of
effective operators to correct for the orthogonality defect.

Lehman (1982) studied the representation of the Pauli exclusion effects in the spin 1/2
state of the α–nucleon interaction. He considered both a repulsive potential and an attractive
potential with excluded Pauli forbidden bound-states. Results for the nuclides He and Li of
mass number A = 6 showed that at low energies both interactions give good fits to the phase
shifts but they differ at higher energies. Lehman concluded that the results for the ground-
state three-body binding energies for the A = 6 nuclides suggested that the attractive excluded
bound-state interaction gives a better representation of the Pauli exclusion principle effects in
the spin 1/2 state than the repulsive form.

All the studies mentioned above were conducted prior to the development of
supersymmetric quantum mechanics which traces its historical roots to the seminal paper
by Witten (1981). All the works mentioned above employ projection operator techniques and
derive effective Hamiltonians which are non-local. A connection between supersymmetric
transformations and inverse scattering theory was made in 1985 (Sukumar 1985a, b). Baye
(1987) showed how two SUSY transformations may be used to produce singular potentials
with singularities of the form discussed in Swan’s work (Swan 1968) and applied the technique
to study α −α scattering. In contrast to the methods used prior to 1982 SUSY transformations
produce new potentials which are guaranteed to be local. The connection between SUSYQM,
the Pauli principle and the nucleon–alpha scattering has been discussed by Amado et al (1990).
There have been other studies of scattering with Pauli-blocked bound-states in compound
systems many of which are based on imposing an orthogonality constraint (Lehman 1982,
Masui et al 2003). In a recent study Masui et al (2003) have considered the implementation
of the Pauli principle for nucleons between clusters by applying the orthogonality condition
model which leads to non-local potentials and have applied it to the study of O16 + α single
channel system and also to Li9 + n coupled-channel system. As emphasised by Amado et al
(1990) it is clear that if inelasticity is ignored then the construction of Baye (1987) based on
SUSYQM provides a unique construction of a local potential for the α–nucleon interaction
that both gives the correct scattering phase shifts and also respects the Pauli principle. The
method used in this paper starts from an orthogonality condition inside a region of variable
radius and generates a local potential which is identical to the singular potential derived by
Baye (1987, 1994) using a two-step SUSY procedure.

4. Conclusions

In this paper it has been shown that the two ways of constructing a new local potential by
the elimination of the lowest n bound-states of a given potential namely the Gelfand–Levitan
procedure and the 2-step SUSY procedure for singular potentials, can both be viewed as arising
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from two different ways of constructing states orthogonal to the lowest n bound-states in the
domain [0, R] or the domain [R,∞] and satisfying the same boundary conditions as �m either
as r → ∞ or as r → 0. The orthogonalization argument discussed in this paper provides
further insights into the structure of the inverse scattering theory. All previous methods for
implementing Pauli exclusion principle in the scattering of composite systems lead to effective
potentials which are non-local. The construction of the potentials discussed in this paper have
as their starting point considerations of orthogonality and therefore it sheds new light on how
the Pauli principle may operate to produce effective local potentials.
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